Noise Filter Pada Mikrokontroler

Merancang sebuah perangkat otomatis berbasis mikrokontroler tidaklah mudah, salah satu kendalanya yaitu adanya noise yang mengganggu kinerja mikrokontroler atau biasa disebut EMI (Electromagnetic Interference).

Pernahkan rangkaian mikrokontroler anda tiba-tiba error, hang, program tiba-tiba tidak berjalan sebagaimana mestinya. Ketika dicoba dirumah berjalan dengan baik dan sempurna akan tetapi ketika dibawa kelain tempat misalnya di pabrik dengan mesin-mesin besar yang sedang berjalan tiba-tiba rangkaian anda error. Atau seringkali dimanapun dicoba rangkaian mikrokontroler anda cendrung tidak stabil.

Jika anda mengalami hal di atas, berarti anda berhadapan dengan yang dimaksud dengan EMI. Apa itu EMI?

EMI (Electromagnetic Interference) adalah gangguan berupa gelombang elektromagnetik yang berasal dari sumber tegangan, seperti electric power, peralatan elektronik, motor listrik dll terhadap peralatan yang ada disekitar gelombang elektromagnetik tersebut.

Bagaimana EMI bisa sangat mempengaruhi mikrokontroler?

Mikrokontroler akan dapat bekerja dengan baik dan stabil apabila supply tegangan juga bekerja dengan stabil. tidak hanya nilai tegangannya tetapi juga harus bebas dari gangguan frekuensi luar. Gambar diatas sangat terlihat sumber tegangan yang terkena interferensi dan sumber tegangan yang baik.

Bagaimana cara menanggulangi EMI pada mikrokontroler?

1. Memasang EMI filter sebelum power supply
Cara ini terbilang yang paling praktis dalam hal ini karena tidak perlu merubah rangkaian mikrokontroler anda. anda bisa memasang produk emi filter sebelum power supply mikrokontroler anda. akan tetapi cara ini menurut saya tidak ekonomis, 

2. Menambahkan rangkaian filter pada rangkaian Power Supply.
Cara ini cukup praktis terutama jika anda membuat rangkaian mikrokontroler sendiri. anda cukup rangkaian ini setelah regulator.

3. Memasang chip EMI filter pada rangkaian
Cara ini yang paling banyak di pakai dalam rangkaian mikrokontroler, selain praktis dan ekonimis EMI filter dalam bentuk chip ini sangat efektif dan presisi. anda cukup memasang chip emi filter pada Vcc dan Gnd rangkaian power supply mikrokontroler anda.
Chip EMI Filter


Semoga bermanfaat.

Migrasi ATMEGA16/32 ke ATMEGA16A/32A

Dalam rangka mengoptimalkan proses manufaktur dan untuk mengurangi konsumsi daya, versi yang telah dioptimalkan dari  mikrokontroler ATMEGA16 adalah ATmega16A, dengan fungsi dan fitur yang identik sama dan merupakan pengganti ATMEGA16. Semua fitur dan set instruksi yang sama namun memiliki karakteristik kelistrikan yang berbeda.
Berikut tabel komparasi perbedaan tersebut :

1. Konsumsi Arus Listrik


2. Reset Pull Up


Membuat PCB Single Layer Dengan Diptrace

Pada kesempatan kali ini saya ingin menunjukan langkah-langkah membuat skema rangkaian (schematic) dan langsung merubahnya kedalam PCB Layout single layer dengan memanfaatkan fungsi autorouter. sehingga proses penjaluran PCB secara otomatis. Semoga bermanfaat..

Jenis-Jenis Mikrokontroler

Mikrokontroler adalah sebuah sistem mikroprosesor lengkap yang terkandung di dalam sebuah chip. Mikrokontroler berbeda dari mikroprosesor serba guna yang digunakan dalam sebuah PC, karena sebuah mikrokontroler umumnya telah berisi komponen pendukung sistem minimal mikroprosesor, yakni memori dan antarmuka I/O.



Jenis – jenis Mikrokontrol:

Atmel
Atmel AT91 series (ARM THUMB architecture)
AT90, Tiny & Mega series – AVR (Atmel Norway design)
Atmel AT89 series (Intel 8051/MCS51 architecture)

Microchip
Low End, Mikrokontroler PIC 12-bit
Mid Range, Mikrokontroler PIC 14-bit
(PIC16F84, PIC16F877)
16-bit instruction PIC
High End, Mikrokontroler PIC 16-bit

Philips Semiconductors
LPC2000, LPC900, LPC700

Penggunaan microcontrol

Sistem mikrokontroler lebih banyak melakukan pekerjaan-pekerjaaan sederhana yang penting seperti mengendalikan motor, saklar/relay, resistor variabel, atau perangkat elektronis lain. Seringkali satu-satunya bentuk antarmuka yang ada pada sebuah sistem mikrokontroler hanyalah sebuah LED, bahkan ini pun bisa dihilangkan jika tuntutan konsumsi daya listrik mengharuskan demikian.


Alat - Alat pemrograman microcontrol


Untuk membuat suatu aplikasi AVR, perlu beberapa tool yang harus
disiapkan. Tool-tool tersebut diperlukan untuk menjalankan tahap-tahap pemrograman AVR. Pada dasarnya, terdapat tiga tahap utama yang perlu dikerjakan dalam pemrograman AVR, yaitu:


Penulisan / Editing
Asembling dan Debuging
Programming/Downloading/Burning
Alat yang dibutuhkan :
Kit Microcontroller / Trainer Microcontroller
Software Assembler
Programmer/downloader

Bahasa Pemrograman yang sering digunakan :
Assembler ( AVR Studio 4 )
Bahasa C (ext. WinAVR)
Setiap bahasa memiliki kelebihan dan kekurangannya masing-masing. Bahasa assembler dituliskan dengan detail setiap langkah yang dijalankan, sehingga penulisanya relatif lebih panjang. Pemrogram harus mengetahui benar proses yang terjadi dalam program tersebut. Namun demikian, program assembler sangat cocok dalam hal efisiensi penggunaan memori program. Di sisi lain, bahasa C memiliki kemudahan dalam penulisan program, namun terkadang kode yang dihasilkan akan memakan memori program yang besar.

Pemrograman Assembler


Program assembler berisi mnemonic instruksi, label, dan pengarah assembler (directive). Mnemonic instruksi, label, dan pengarah assembler (directive). Mnemonic instruksi dan pengarah sering kali membutuhkan operan dalam penulisannya. Baris kode dalam penulisan program assembler dibatasi hingga 120 karakter.
Software yang dibutuhkan :
AVR Studio 4
Digunakan untuk menulis kode program dan mengcompile kode yang selanjutnya siap untuk didownload ke chip micro.
Ponyprog 2000
Digunakan untuk downloader hasil compile dari AVR Studio kedalam chip micro.

Struktur dasar micro
Terdiri atas :
General purpose register ( R0 – R31) untuk operasi aritmetika
I/O Register ( Register Untuk Input Output )
Port I/O

Register adalah media penyimpanan dengan kapasitas 8 bit.
Register dapat diisidengan bilangan dari 0 sampai 255 atau dengan bilangan
Hexadecimal dari $00 sampai $FF

Cara memulai belajar pemrograman bisa dilihat disini.



Contoh kode :
Output sederhana .
Tuliskan pada editor AVR Studio.


;My Very First AVR Project
.include “2313def.inc" ;Memasukan file definisi 2313 kedalam program
.def Temp = R16 ; mendefinisikan R16 dengan nama Temp
rjmp RESET ;melompat ke label RESET
RESET: ;Reset Label
ldi Temp, $FF ; Mengisi Temp dengan bilangan $FF
out DDRB, Temp ;Mengeset PORTB sebagai Output
Loop: ;Loop Label
ldi Temp, $0F ; Mengisi Temp dengan bilangan $0F
out PORTB, Temp ; outputkan nilai Temp ke PORTB
rjmp Loop ;melompat ke label Loop


Contoh kode :
Input sederhana .
Tuliskan pada editor AVR Studio.

;My Very First AVR Project
.include “2313def.inc" ;Memasukan file definisi 2313 kedalam program
.def Temp = R16 ; mendefinisikan R16 dengan nama Temp
rjmp RESET ;melompat ke label RESET
RESET: ;Reset Label
ldi Temp, $00 ;Mengisi Temp dengan bilangan $00
out DDRD, Temp ;mengeset PORTD sebagai Input
ldi Temp, $FF ; Mengisi Temp dengan bilangan $FF
out DDRB, Temp ;Mengeset PORTB sebagai Output
LOOP:
sbis PIND,0 ;Lewati perintah selanjutnya jika PIND bit 0 Kondisi HIGH
rcall NYALA ;Memanggil Instruksi dalam label NYALA
sbis PIND,1 ;Lewati perintah selanjutnya jika PIND bit 1 Kondisi HIGH
rcall MATI ;Memanggil Instruksi dalam label MATI
rjmp LOOP ;Melompat ke label LOOP
NYALA:
sbi PORTB,0 ;Mengeset HIGH pada PORTB bit 0
ret ;Return / Kembali
MATI:
cbi PORTB,0 ;Mengeset LOW pada PORTB bit 0
Ret ;Return / Kembali


Contoh kode :
Delay.
Tuliskan pada editor AVR Studio.

.include “2313def.inc"
.def Temp = R16
rjmp RESET
RESET: ldi TEMP,low(RAMEND)
out SPL,TEMP
ldi Temp, $FF
out DDRB, Temp
LEDBLINK: ldi Temp,$0F
out PORTB,Temp
rcall DELAY
ldi Temp,$F0
out PORTB,Temp
rcall DELAY
rjmp LEDBLINK
DELAY: ldi R17, $48
WGLOOP0: ldi R18, $BC
WGLOOP1: ldi R19, $C4
WGLOOP2: dec R19
brne WGLOOP2
dec R18
brne WGLOOP1
dec R17
brne WGLOOP0
ldi R17, $02
WGLOOP3: dec R17
brne WGLOOP3
nop
nop
ret

Aktuator Pneumatik

http://adf.ly/1Zsehttp://adf.ly/1Zsehttp://adf.ly/1ZseAktuator adalah bagian keluaran untuk mengubah energi suplai menjadi energi kerja yang dimanfaatkan. Sinyal keluaran dikontrol oleh sistem kontrol dan aktuator bertanggung jawab pada sinyal kontrol melalui elemen kontrol terakhir.
Aktuator pneumatik dapat digolongkan menjadi 2 kelompok : gerak lurus dan putar. :
  1. Gerakan lurus (gerakan linear) :
* Silinder kerja tunggal.
* Silinder kerja ganda.
  1. Gerakan putar :
* Motor udara
* Aktuator yang berputar (ayun)

Simbol-simbol aktuator linear sebagai berikut :


screenhunter_10-nov-03-2032.gif
Simbol aktuator gerakan putar :
screenhunter_12-nov-03-2033.gif
1.2. Silinder Kerja Tunggal
1.2.1 Konstruksi
Silinder kerja tunggal mempunyai seal piston tunggal yang dipasang pada sisi suplai udara bertekanan. Pembuangan udara pada sisi batang piston silinder dikeluarkan ke atmosfir melalui saluran pembuangan. Jika lubang pembuangan tidak diproteksi dengan sebuah penyaring akan memungkinkan masuknya partikel halus dari debu ke dalam silinder yang bisa merusak seal. Apabila lubang pembuangan ini tertutup akan membatasi atau menghentikan udara yang akan dibuang pada saat silinder gerakan keluar dan gerakan akan menjadi tersentak-sentak atau terhenti. Seal terbuat dari bahan yang fleksibel yang ditanamkan di dalam piston dari logam atau plastik. Selama bergerak permukaan seal bergeser dengan permukaan silinder.
Gambar konstruksi silinder kerja tunggal sebagai berikut :
screenhunter_13-nov-03-2033.gif
1.2.2 Prinsip Kerja
Dengan memberikan udara bertekanan pada satu sisi permukaan piston, sisi yang lain terbuka ke atmosfir. Silinder hanya bisa memberikan gaya kerja ke satu arah . Gerakan piston kembali masuk diberikan oleh gaya pegas yang ada didalam silinder direncanakan hanya untuk mengembalikan silinder pada posisi awal dengan alasan agar kecepatan kembali tinggi pada kondisi tanpa beban.
Pada silinder kerja tunggal dengan pegas, langkah silinder dibatasi oleh panjangnya pegas . Oleh karena itu silinder kerja tunggal dibuat maksimum langkahnya sampai sekitar 80 mm.
1.2.3 Kegunaan
Menurut konstruksinya silinder kerja tunggal dapat melaksanakan berbagai fungsi gerakan , seperti :
· menjepit benda kerja
· pemotongan
· pengeluaran
· pengepresan
· pemberian dan pengangkatan.
1.2.4. Macam-Macam Silinder Kerja Tunggal
Ada bermacam-macam perencanaan silinder kerja tunggal termasuk :
· Silinder membran (diafragma)
· Silinder membran dengan rol
1.3 Silinder Ganda
1.3.1 Konstruksi
Konstruksi silinder kerja ganda adalah sama dengan silinder kerja tunggal, tetapi tidak mempunyai pegas pengembali. Silinder kerja ganda mempunyai dua saluran (saluran masukan dan saluran pembuangan). Silinder terdiri dari tabung silinder dan penutupnya, piston dengan seal, batang piston, bantalan, ring pengikis dan bagian penyambungan. Konstruksinya dapat dilihat pada gambar berikut ini :
screenhunter_14-nov-03-2036.gif
Biasanya tabung silinder terbuat dari tabung baja tanpa sambungan. Untuk memperpanjang usia komponen seal permukaan dalam tabung silinder dikerjakan dengan mesin yang presisi. Untuk aplikasi khusus tabung silinder bisa dibuat dari aluminium , kuningan dan baja pada permukaan yang bergeser dilapisi chrom keras. Rancangan khusus dipasang pada suatu area dimana tidak boleh terkena korosi.
Penutup akhir tabung adalah bagian paling penting yang terbuat dari bahan cetak seperti aluminium besi tuang. Kedua penutup bisa diikatkan pada tabung silinder dengan batang pengikat yang mempunyai baut dan mur.
Batang piston terbuat dari baja yang bertemperatur tinggi. Untuk menghindari korosi dan menjaga kelangsungan kerjanya, batang piston harus dilapisi chrom.
Ring seal dipasang pada ujung tabung untuk mencegah kebocoran udara. Bantalan penyangga gerakan batang piston terbuat dari PVC, atau perunggu. Di depan bantalan ada sebuah ring pengikis yang berfungsi mencegah debu dan butiran kecil yang akan masuk ke permukaan dalam silinder. Bahan seal pasak dengan alur ganda :
· Perbunan untuk - 20° C s/d + 80° C
· Viton untuk - 20° C s/d + 190° C
· Teflon untuk - 80° C s/d + 200° C
Ring O normal digunakan untuk seal diam.
1.3.2 Prinsip Kerja
Dengan memberikan udara bertekanan pada satu sisi permukaan piston (arah maju) , sedangkan sisi yang lain (arah mundur) terbuka ke atmosfir, maka gaya diberikan pada sisi permukaan piston tersebut sehingga batang piston akan terdorong keluar sampai mencapai posisi maksimum dan berhenti. Gerakan silinder kembali masuk, diberikan oleh gaya pada sisi permukaan batang piston (arah mundur) dan sisi permukaan piston (arah maju) udaranya terbuka ke atmosfir.
Keuntungan silinder kerja ganda dapat dibebani pada kedua arah gerakan batang pistonnya. Ini memungkinkan pemasangannya lebih fleksibel. Gaya yang diberikan pada batang piston gerakan keluar lebih besar daripada gerakan masuk. Karena efektif permukaan piston dikurangi pada sisi batang piston oleh luas permukaan batang piston
Silinder aktif adalah dibawah kontrol suplai udara pada kedua arah gerakannya. Pada prinsipnya panjang langkah silinder dibatasi, walaupun faktor lengkungan dan bengkokan yang diterima batang piston harus diperbolehkan. Seperti silinder kerja tunggal, pada silinder kerja ganda piston dipasang dengan seal jenis cincin O atau membran.
1.3.3. Pemasangan Silinder
Jenis pemasangan silinder ditentukan oleh cara cara gerakan silinder yang ditempatkan pada sebuah mesin atau peralatan . Silinder bisa dirancang dengan jenis pemasangan permanen jika tidak harus diatur setiap saat. Alternatif lain, silinder bisa menggunakan jenis pemasangan yang diatur, yang bisa diubah dengan menggunakan perlengkapan yang cocok pada prinsip konstruksi modul. Alasan ini adalah penyederhanaan yang penting sekali dalam penyimpanan, lebih khusus lagi dimana silinder pneumatik dengan jumlah besar digunakan seperti halnya silinder dasar dan bagian pemasangan dipilih secara bebas membutuhkan untuk disimpan.
Pemasangan silinder dan kopling batang piston harus digabungkan dengan hati-hati pada penerapan yang relevan, karena silinder harus dibebani hanya pada arah aksial. Secepat gaya dipindahkan ke sebuah mesin, secepat itu pula tekanan terjadi pada silinder. Jika sumbu salah gabung dan tidak segaris dipasang, tekanan bantalan pada tabung silinder dan batang piston dapat diterima. Sebagai akibatnya adalah :
· Tekanan samping yang besar pada bantalan silinder memberikan indikasi bahwa pemakaian silinder meningkat.
· Tekanan samping pada batang piston akan mengikis bantalan
· Tekanan tidak seimbang pada seal piston dan batang piston.
Tekanan samping ini sering mendahului faktor pengurangan perawatan silinder yang sudah direncanakan sebelumnya. Pemasangan bantalan silinder yang dapat diatur dalam tiga dimensi membuat kemungkinan untuk menghindari tekanan bantalan yang berlebihan pada silinder. Momen bengkok yang akan terjadi selanjutnya dibatasi oleh penggesekan yang bergeser pada bantalan. Ini bertujuan bahwa silinder diutamakan bekerja hanya pada tekanan yang sudah direncanakan, sehingga bisa mencapai secara maksimum perawatan yang sudah direncanakan.
Gambar di bawah menunjukkan cara pemasangan silinder.
screenhunter_15-nov-03-2037.gif
1.3.4 Kegunaan
Silinder pneumatik telah dikembangkan pada arah berikut :
· Kebutuhan penyensoran tanpa sentuhan (menggunakan magnit pada piston untuk mengaktifkan katup batas /limit switch dengan magnit )
· Penghentian beban berat pada unit penjepitan dan penahan luar tiba-tiba.
· Silinder rodless digunakan dimana tempat terbatas.
· Alternatif pembuatan material seperti plastik
· Mantel pelindung terhadap pengaruh lingkungan yang merusak, misalnya sifat tahan asam
· Penambah kemampuan pembawa beban.
· Aplikasi robot dengan gambaran khusus seperti batang piston tanpa putaran, batang piston berlubang untuk mulut pengisap.
1.3.5 Macam-Macam Silinder Kerja Ganda
screenhunter_16-nov-03-2039.gif
1.3.5.1 Silinder Dengan Peredam Diakhir Langkah
Jika silinder harus menggerakkan massa yang besar, maka dipasang peredam di akhir langkah untuk mencegah benturan keras dan kerusakan silinder. Sebelum mencapai posisi akhir langkah, peredam piston memotong langsung jalan arus pembuangan udara ke udara bebas. Untuk itu disisakan sedikit sekali penampang pembuangan yang umumnya dapat diatur. Sepanjang bagian terakhir dari jalan langkah , kecepatan masuk dikurangi secara drastis.
Jangan sekali-sekali menutup baut pengatur secara penuh sebab akan mengakibatkan batang piston tidak dapat mencapai posisi akhir gerakannya. Pada gaya yang sangat besar dan percepatan yang tinggi, harus dilakukan upaya pengamanan khusus. Pasanglah peredam kejut luar untuk memperkuat daya hambat.
Konstruksi silinder kerja ganda dengan bantalan udara sebagai berikut :
screenhunter_17-nov-03-2041.gif
1.4 Karakteristik Silinder
Karakteristik penampilan silinder dapat ditentukan secara teori atau dengan data-data dari pabriknya. Kedua metode ini dapat dilaksanakan, tetapi biasanya untuk pelaksanaan dan penggunaan tertentu, data-data dari pabriknya adalah lebih menyakinkan.
1.4.1 Gaya Piston
Gaya piston yang dihasilkan oleh silinder bergantung pada tekanan udara, diameter silinder dan tahanan gesekan dari komponen perapat. Gaya piston secara teoritis dihitung menurut rumus berikut :
screenhunter_18-nov-03-2047.gif
Untuk silinder kerja tunggal :
screenhunter_19-nov-03-2048.gif
Untuk silinder kerja ganda :
Langkah Maju :
screenhunter_20-nov-03-2049.gif
langkah mundur:
screenhunter_21-nov-03-2051.gif
Keterangan :
screenhunter_22-nov-03-2052.gif
Pada silinder kerja tunggal, gaya piston silinder kembali lebih kecil daripada gaya piston silinder maju karena pada saat kembali digerakkan oleh pegas . Sedangkan pada silinder kerja ganda, gaya piston silinder kembali lebih kecil daripada silinder maju karena adanya diameter batang piston akan mengurangi luas penampang piston. Sekitar 3 – 10 % adalah tahanan gesekan. Berikut ini adalah gaya piston silinder dari berbagai ukuran pada tekanan 1 – 10 bar.
screenhunter_23-nov-03-2054.gif
Silinder pneumatik tahan terhadap beban lebih. Silinder pneumatik dapat dibebani lebih besar dari kapasitasnya. Beban yang tinggi menyebabkan silinder diam .
1.4.2 Kebutuhan Udara
Untuk menyiapan udara dan untuk mengetahui biaya pengadaan energi, terlebih dahulu harus diketahui konsumsi udara pada sistem. Pada tekanan kerja, diameter piston dan langkah tertentu, konsumsi udara dihitung sebagai berikut :
screenhunter_24-nov-03-2057.gif
Untuk mempermudah dan mempercepat dalam menentukan kebutuhan udara, tabel di bawah ini menunjukkan kebutuhan udara persentimeter langkah piston untuk berbagai macam tekanan dan diameter piston silinder.
Tabel : Kebutuhan udara silinder pneumatik persentimeter langkah dengan fungsi tekanan kerja dan diameter piston.
screenhunter_25-nov-03-2103.gif
Kebutuhan udara dihitung dengan satuan liter/menit (l/min) sesuai dengan standar kapasitas kompresor. Kebutuhan udara silinder sebagai berikut :
screenhunter_26-nov-03-2105.gif
Keterangan :
screenhunter_27-nov-03-2106.gif
1.4.3 Kecepatan Piston
Kecepatan piston rata-rata dari silinder standar berkisar antara 0,1-1,5 m/s (6 – 90 m/min). Silinder khusus dapat mencapai kecepatan 10 m/s. Kecepatan silinder pneumatik tergantung :
· beban ( gaya yang melawan silinder ),
· tekanan kerja,
· diameter dalam dan panjang saluran antara silinder dan katup kontrol arah,
· ukuran katup kontrol arah yang digunakan.
Kecepatan piston dapat diatur dengan katup pengontrol aliran dan dapat ditingkatkan dengan katup pembuang cepat yang dipasang pada sistem kontrol tersebut. Kecepatan rata-rata piston tergantung dari gaya luar yang melawan piston (beban) dan ukuran lubang aliran dapat dilihat seperti pada tabel berikut :
screenhunter_28-nov-03-2107.gif
1.4.4 Langkah Piston
Langkah silinder pneumatik tidak boleh lebih dari 2 m, sedangkan untuk silinder rodless jangan lebih dari 10 m. Akibat langkah yang panjang, tekanan mekanik batang piston dan bantalan menjadi terlalu besar. Untuk menghindari bahaya tekanan, diameter batang piston pada langkah yang panjang harus sedikit lebih besar.

SERVO CONTROL



Dahulu kita hanya ketahui bahwa motor servo adalah motor yang digunakan untuk mengontrol peralatan Radio Remote Control. Entah itu mobil-mobilan maupun pesawat, mereka menggunakan motor servo. Namun kini bermunculan mainan mobil remote dari China yang berharga murah, dan mainan ini tidak menggunakan motor servo.


Prinsip DasarMotor servo adalah sebuah motor dengan sistem umpan balik tertutup di mana posisi dari motor akan diinformasikan kembali ke rangkaian kontrol yang ada di dalam motor servo. Motor ini terdiri dari sebuah motor DC, serangkaian gear, potensiometer dan rangkaian kontrol. Potensiometer berfungsi untuk menentukan batas sudut dari putaran servo. Sedangkan sudut dari sumbu motor servo diatur berdasarkan lebar pulsa yang dikirim melalui kaki sinyal dari kabel motor.Karena motor DC servo merupakan alat untuk mengubah energi listrik menjadi energi mekanik, maka magnit permanent motor DC servolah yang mengubah energi listrik ke dalam energi mekanik melalui interaksi dari dua medan magnit. Salah satu medan dihasilkan oleh magnit permanent dan yang satunya dihasilkan oleh arus yang mengalir dalam kumparan motor. Resultan dari dua medan magnit tersebut menghasilkan torsi yang membangkitkan putaran motor tersebut. Saat motor berputar, arus pada kumparan motor menghasilkan torsi yang nilainya konstan.







Prinsip kerja motor didasarkan pada peletakan suatu konduktor dalam suatu medan magnit. Pembahasan mengenai prinsip aliran medan magnit akan membantu kita memahami prinsip kerja dari sebuah motor. Jika suatu konduktor dililitkan dengan kawat berarus maka akan dibangkitkan medan magnit berputar. Kontribusi dari setiap putaran akan merubah intensitas medan magnit yang ada dalam bidang yang tertutup kumparan. Dengan cara inilah medan magnit yang kuat terbentuk. Tenaga yang digunakan untuk mendorong flux magnit tersebut disebut Manetomotive Force ( MMF ).Flux magnet digunakan untuk mengetahui seberapa banyak flux pada daerah disekitar koil atau magnit permanent. Medan magnit pada motor DC servo dibangkitkan oleh magnit permanent, jadi tidak perlu tenag untuk membuat medan magnit. Flux madan magnit pada stator tidak dipengaruhi oleh arus armature. Oleh karena itu, kurva perbandingan antara kecepatan dengan torsi adalah linier.Pada prinsipnya jika sebuah penghantar dilalui arus listrik, Ia, ia akan menghasilkan medan magnet disekelilingnya. Kemudian bilamana penghantar ini ditempatkan dalam induksi magnetic B, akan memperoleh gaya FB. besarnya gaya yang ditimbulkan sebanding dengan arus listrik Ia dan panjang penghantar L yang memotong induksi magnetik B. atau biasa dinyatakan dengan persamaan, Induksi magnetik,Fb = B . I . L
Pada saat motor berputar arus pada kumparan motor menghasilkan torsi yang nilainya konstan. Pada motor DC servo ini ada tiga kumparan utama yaitu :1. Armatur2. Magnet Permanen3. Komutator
Jika suatu konduktor (besi) dililitkan dengan suatu kawat berarus maka akan dibangkitkan medan magnet berputar, kontribusi dari setiap putaran akan merubah intensitas medan magnet yang adadalam bidang yang tertutup kumparan dengan cara ini medan magnet tersebut disebut Magnet Motive Force (MMF). Fluks magnet digunakan untuk mengetahui seberapa banyak fluks yang ada pada daerah disekitar koil atau manet permanent. Medan magnet pada motor servo dibangkitkan oleh magnet permanent, jadi tidak perlu tenaga untuk membuat medan magnet. Fluk pada medan stator tidak dipengaruhi oleh arus dari motoroleh karena itu, kurva perbandingan antara kecepatan dengan torsi adalah linear.
Model dasar rangkaian motor servo
Jenis Motor ServoSecara umum terdapat 2 jenis motor servo. Yaitu motor servo standard dan motor servo Continous. Motor servo standard sering dipakai pada sistim robotika misalnya untuk membuat “ Robot Arm” ( Robot Lengan ) sedangkan motor servo Continous sering dipakai untuk Mobile Robot. Pada badan servo tertulis tipe servo yang bersangkutan.
Motor servo merupakan sebuah motor dc kecil yang diberi sistim gear dan potensiometer sehingga dia dapat menempatkan “horn” servo pada posisi yang dikehendaki. Karena motor ininmenggunakan sistim close loop sehingga posisi “horn” yang dikehendaki bisa dipertahanakan. “Horn” pada servo ada dua jenis. Yaitu Horn “ X” ( seperti pada gambar di samping ) dan Horn berbentuk bulat.
Mengontrol Motor ServoPenggunaan motor servo untuk bidang robotika tentu ada alasannya. Pertama adalah motor servo memiliki putaran yang lambat dan torsi yang kuat ( berkat adanya sistim gear ). Hal ini cocok dengan bidang robotika, bandingkan misalnya dengan motor dc biasa yang memiliki putaran cepat namun torsi rendah. Poros Motor dc yang dihubungkan langsung dengan roda, tidak akan kuat untuk menggerakkan mobile robot tersebut, demikian juga dengan motor stepper. Kedua jenis motor ini harus dihubungkan terlebih dulu dengan sistim gear agar dapat dipergunakan. Namun poros servo dapat dihubungkan langsung dengan roda. Kedua, sistim kontrol untuk motor servo relatif sedikit (diperlukan hanya 1 jalur data saja ). Hal ini tentu berbeda misalnya jika kita menggunakan motor stepper yang memerlukan jalur kontrol lebih dari 1 jalur. Oleh karena itu tantangannya adalah bagaimana mengontrol motor servo yang hanya menggunakan 1 jalur tersebut. Oleh karena hanya digunakan 1 jalur data untuk mengontrol motor servo, maka digunakan teknik PWM ( Pulse Width Modulation = Modulasi Lebar Pulsa ).

Dalam aplikasi yang lain, motor DC servo motor yang digunakan dalam harddisk komputer adalah DC servo motor yang menggunakan permanen magnet. Alasan pemilihan DC servo motor tipe ini adalah kemudahan dalam pengontrolan dengan menggunakan pengaturan tegangan DC. Medan stator motor jenis ini dihasilkan oleh magnet permanen bukan elektromagnet. Permanen Magnet motor mempunyai kurva kecepatan torsi yang linier dalam jangka yang lebar. Penggunaan magnet permanen tidak membutuhkan daya listrik untuk menghasilkan medan stator, sehingga daya dan pendinginan yang diperlukan lebih rendah dibandingkan motor yang menggunakan elektromagnet. Perubahan kecepatan motor dapat dengan mudah diatur dengan cara mengubah ubah besarnya tegangan DC yang diberikan pada motor.DC servo motor memiliki beberapa keunggulan, yaitu :1. Bentuknya kompak, ringan dan berdaya kerja tinggi2. Kecepatan maksimum yang sangat tinggi3. Tegangan dan arus yang konstan