Dasar Pemrograman MCS51 (Bagian 2)

Dasar Pemrograman MCS51 (AT89C51, AT89S51, AT89C2051) atau keluarga mikrokontroler MCS51 Bagian Kedua.
Pada dasarnya program dijalankan intruksi demi instruksi, artinya selesai menjalankan satu instruksi mikrokontroler langsung menjalankan instruksi berikutnya, untuk keperluan ini mikrokontroler dilengkapi dengan Program Counter yang mengatur pengambilan intruksi secara berurutan. Meskipun demikian, program yang kerjanya hanya berurutan saja tidaklah banyak artinya, untuk keperluan ini mikrokontroler dilengkapi dengan instruksi-instruksi untuk mengatur alur program.

    Secara umum kelompok instruksi yang dipakai untuk mengatur alur program terdiri atas instruksi-instruksi JUMP (setara dengan statemen GOTO dalam Pascal), instruksi-instruksi untuk membuat dan memakai sub-rutin/modul (setara dengan PROCEDURE dalam Pascal), instruksi-instruksi JUMP bersyarat (conditional Jump, setara dengan statemen IF .. THEN dalam Pascal). Di samping itu ada pula instruksi PUSH dan POP yang bisa memengaruhi alur program.
    Karena Program Counter adalah satu-satunya register dalam mikrokontroler yang mengatur alur program, maka kelompok instruksi pengatur program yang dibicarakan di atas, semuanya merubah nilai Program Counter, sehingga pada saat kelompok instruksi ini dijalankan, nilai Program Counter akan tidak akan runtun dari nilai instruksi sebelumnya.
     Selain karena instruksi-instruksi di atas, nilai Program Counter bisa pula berubah karena pengaruh perangkat keras, yaitu saat mikrokontroler di-reset atau menerima sinyal interupsi dari perangkat input/output. Hal ini akan dibicarakan secara detail dibagian lagi.

Kelompok Instruksi JUMP

Mikrokontroler menjalankan intruksi demi instruksi, selesai menjalankan satu instruksi mikrokontroler langsung menjalankan instruksi berikutnya, hal ini dilakukan dengan cara nilai Program Counter bertambah sebanyak jumlah byte yang membentuk instruksi yang sedang dijalankan, dengan demikian pada saat instruksi bersangkutan dijalankan Program Counter selalu menyimpan nomor memori-program yang menyimpan instruksi berikutnya.
Pada saat mikrokontroler menjalankan kelompok instruksi JUMP, nilai Program Counter yang runtun sesuai dengan alur program diganti dengan nomor memori-program baru yang dikehendaki programer.
Mikrokontroler MCS51 mempunyai 3 macam intruksi JUMP, yakni instruksi LJMP (Long Jump), instruksi AJMP (Absolute Jump) dan instruksi SJMP (Short Jump). Kerja dari ketiga instruksi ini persis sama, yakni memberi nilai baru pada Program Counter, kecepatan melaksanakan ketiga instruksi ini juga persis sama, yakni memerlukan waktu 2 periode instruksi (jika MCS51 bekerja pada frekuensi 12 MHz, maka instruksi ini dijalankan dalam waktu 2 mikro-detik), yang berbeda dalam jumlah byte pembentuk instruksinya, instruksi LJMP dibentuk dengan 3 byte, sedangkan instuksi AJMP dan SJMP cukup 2 byte.

Instruksi LJMP

Kode untuk instruksi LJMP adalah $02, nomor memori-program baru yang dituju dinyatakan dengan bilangan biner 16 bit, dengan demikian instruksi ini bisa menjangkau semua memori-program MCS51 yang jumlahnya 64 KiloByte. Instruksi LJMP terdiri atas 3 byte, yang bisa dinyatakan dengan bentuk umum 02 aa aa, aa yang pertama adalah nomor memori-program bit 8 sampai dengan bit 15, sedangkan aa yang kedua adalah nomor memori-program bit 0 sampai dengan bit 7.
Pemakaian instruksi LJMP bisa dipelajari dari potongan program berikut :

LJMP TugasBaru
ORG $2000
TugasBaru:
MOV A,P3.1

Dalam potongan program di atas, ORG adalah perintah pada assembler agar berikutnya assembler bekerja pada memori-program nomor yang disebut di belakang ORG (dalam hal ini minta assembler berikutnya bekerja pada memori-program nomor $2000). TugasBaru disebut sebagai LABEL, yakni sarana assembler untuk menandai/ menamai nomor memori-program. Dengan demikian, dalam potongan program di atas, memori-program nomor $2000 diberi nama TugasBaru, atau bisa juga dikatakan bahwa TugasBaru bernilai $2000. (Catatan : LABEL ditulis minimal satu huruf lebih kiri dari instruksi, artinya LABEL ditulis setelah menekan tombol Enter, tapi instruksi ditulis setelah menekan tombol Enter, kemudian diikuti dengan 1 tombol spasi atau tombol TAB).
Dengan demikian intruksi LJMP TugasBaru di atas, sama artinya dengan LJMP $2000 yang oleh assembler akan diterjemahkan menjadi 02 20 00 (heksadesimal).

Instruksi AJMP

Nomor memori-program baru yang dituju dinyatakan dengan bilangan biner 11 bit, dengan demikian instruksi ini hanya bisa menjangkau satu daerah memori-program MCS51 sejauh 2 KiloByte. Instruksi AJMP terdiri atas 2 byte, byte pertama merupakan kode untuk instruksi AJMP (00001b) yang digabung dengan nomor memori-program bit nomor 8 sampai dengan bit nomor 10, byte kedua dipakai untuk menyatakan nomor memori-program bit nomor 0 sampai dengan bit nomor 7.
Berikut ini adalah potongan program untuk menjelaskan pemakaian instruksi AJMP:

ORG  $800
AJMP DaerahIni
AJMP DaerahLain
ORG  $900
DaerahIni:
      . . .
ORG  $1000
DaerahLain:
. . .

Potongan program di atas dimulai di memori-program nomor $800, dengan demikian instruksi AJMP DaerahIni bisa dipakai, karena nomor-memori $800 (tempat instruksi AJMP DaerahIni) dan LABEL DaerahIni yang terletak di dalam satu daerah memori-progam 2 KiloByte yang sama dengan. (Dikatakan terletak di dalam satu daerah memori-program 2 KiloByte yang sama, karena bit nomor 11 sampai dengan bit nomor 15 dari nomor memorinya sama).
Tapi AJMP DaerahLain akan di-salah-kan oleh Assembler, karena DaerahLain yang terletak di memori-program nomor $1000 terletak di daerah memori-program 2 KiloByte yang lain.
Karena instruksi AJMP hanya terdiri dari 2 byte, sedangkan instruksi LJMP 3 byte, maka memakai instruksi AJMP lebih hemat memori-program dibanding dengan LJMP. Hanya saja karena jangkauan instrusksi AJMP hanya 2 KiloByte, pemakaiannya harus hati-hati.
Memori-program IC mikrokontroler AT89C1051 dan AT89C2051 masing-masing hanya 1 KiloByte dan 2 KiloByte, dengan demikian program untuk kedua mikrokontroler di atas tidak perlu memakai instruksi LJMP, karena program yang ditulis tidak mungkin menjangkau lebih dari 2 KiloByte memori-program.


Instruksi SJMP

Nomor memori-program dalam instruksi ini tidak dinyatakan dengan nomor memori-program yang sesungguhnya, tapi dinyatakan dengan ‘pergeseran relatip’ terhadap nilai Program Counter saat instruksi ini dilaksanakan.
Pergeseran relatip tersebut dinyatakan dengan 1 byte bilangan 2’s complement, yang bisa dipakai untuk menyakatakan nilai antara –128 sampai dengan +127. Nilai minus dipakai untuk menyatakan bergeser ke instruksi-instruksi sebelumnya, sedangkan nilai positip untuk menyatakan bergeser ke instruksi-instruksi sesudahnya.
Meskipun jangkauan instruksi SJMP hanya –128 sampai +127, tapi instruksi ini tidak dibatasi dengan pengertian daerah memori-program 2 KiloByte yang membatasi instruksi AJMP.

ORG  $0F80
SJMP DaerahLain
. . .
ORG  $1000
DaerahLain:

Dalam potongan program di atas, memori-program $0F80 tidak terletak dalam daerah memori-program 2 KiloByte yang sama dengan $1000, tapi instruksi SJMP DaerahLain tetap bisa dipakai, asalkan jarak antara instruksi itu dengan LABEL DaerahLain tidak lebih dari 127 byte.

Kelompok Instruksi untuk sub-rutin

Instruksi-instruksi untuk membuat dan memakai sub-rutin/modul program, selain melibatkan Program Counter, melibatkan pula Stack yang diatur oleh Register Stack Pointer.
Sub-rutin merupakan suatu potong program yang karena berbagai pertimbangan dipisahkan dari program utama. Bagian-bagian di program utama akan ‘memanggil’ (CALL) sub-rutin, artinya mikrokontroler sementara meninggalkan alur program utama untuk mengerjakan instruksi-instruksi dalam sub-rutin, selesai mengerjakan sub-rutin mikrokontroler kembali ke alur  program utama.
Satu-satunya cara membentuk sub-rutin adalah memberi instruksi RET pada akhir potongan program sub-rutin. Program sub-rutin di-’panggil’ dengan instruksi ACALL atau LCALL.
Agar nantinya mikrokontroler bisa meneruskan alur program utama, pada saat menerima instruksi ACALL atau LCALL, sebelum mikrokontroler pergi mengerjakan sub-rutin, nilai Program Counter saat itu disimpan dulu ke dalam Stack (Stack adalah sebagian kecil dari memori-data yang dipakai untuk menyimpan nilai Program Counter secara otomatis, kerja dari Stack dikendalikan oleh Register Stack Poiner).
Selanjutnya mikrokontroler mengerjakan instruksi-instruksi di dalam sub-rutin sampai menjumpai instruksi RET yang berfungsi sebagai penutup dari sub-rutin. Saat menerima instruksi RET, nilai asal Program Counter sebelum mengerjakan sub-rutin yang disimpan di dalam Stack, dikembalikan ke Program Counter sehingga mikrokontroler bisa meneruskan pekerjaan di alur program utama.
Instruksi ACALL dipakai untuk me-‘manggil’ program sub-rutin dalam daerah memori-program 2 KiloByte yang sama, setara dengan instruksi AJMP yang sudah dibahas di atas. Sedangkan instruksi LCALL setara dengan instruksi LCALL, yang bisa menjangkau seluruh memori-program mikrokontroler MCS51 sebanyak 64 KiloByte. (Tapi tidak ada instrusk SCALL yang setara dengan instruksi SJMP).
Program untuk AT89C1051 dan AT89C2051 tidak perlu memakai instruksi LCALL.
Instruksi RET dipakai untuk mengakhiri program sub-rutin, di samping itu masih ada pula instruksi RETI, yakni instruksi yang dipakai untuk mengakhiri Program Layanan Interupsi (Interrupt Service Routine), yaitu semacam program sub-rutin yang dijalankan mikrokontroler pada saat mikrokontroler menerima sinyal permintaan interupsi.
Catatan : Saat mikrokontroler menerima sinyal permintaaan interupsi, mikrokontroler akan melakukan satu hal yang setara dengan intruksi LCALL untuk menjalankan Program Layanan Interupsi dari sinyal interupsi bersangkutan. Di samping itu, mikrokontroler juga me-‘mati’-kan sementara mekanisme layanan interupsi, sehingga permintaan interupsi berikutnya tidak dilayani. Saat menerima instruksi RETI, makanisme layanan interusi kembali diaktipkan dan mikrokontroler melaksanakan hal yang setara dengan instruksi RET.


Kelompok Instruksi Jump Bersyarat

Instruksi Jump bersyarat merupakan instruksi inti bagi mikrokontroler, tanpa kelompok instruksi ini program yang ditulis tidak banyak berarti. Instruksi-instruksi ini selain melibatkan Program Counter, melibatkan pula kondisi-kondisi tertentu yang biasanya dicatat dalam bit-bit tertentu yang dihimpun dalam Register tertentu.
Khusus untuk keluarga mikrokontroler MCS51 yang mempunyai kemampuan menangani operasi dalam level bit, instruksi jump bersyarat dalam MCS51 dikaitkan pula dengan kemampuan operasi bit MCS51.
Nomor memori-program baru yang harus dituju tidak dinyatakan dengan nomor memori-program yang sesungguhnya, tapi dinyatakan dengan ‘pergeseran relatip’ terhadap nilai Program Counter saat instruksi ini dilaksana­kan. Cara ini dipakai pula untuk instruksi SJMP.

Instruksi JZ / JNZ

Instruksi JZ (Jump if Zero) dan instruksi JNZ (Jump if not Zero) adalah instruksi JUMP bersyarat yang memantau nilai Akumulator A.

MOV A,#0
JNZ BukanNol
JZ  Nol
. . .
BukanNol:
. . .
Nol :
      . . .

Dalam contoh program di atas, MOV A,#0 membuat A bernilai nol, hal ini mengakibatkan instruksi JNZ BukanNol tidak akan pernah dikerjakan (JNZ artinya Jump kalau nilai A<>0, syarat ini tidak pernah dipenuhi karena saat instruksi ini dijalankan nilai A=0), sedangankan instruksi JZ Nol selalu dikerjakan karena syaratnya selalu dipenuhi.

Instruksi JC / JNC

Instruksi JC (Jump on Carry) dan instruksi JNC (Jump on no Carry) adalah instruksi jump bersyarat yang memantau nilai bit Carry di dalam Program Status Word (PSW).

Instruksi JB / JNB / JBC

Instruksi JB (Jump on Bit Set), instruksi JNB (Jump on not Bit Set) dan instruksi JBC (Jump on Bit Set Then Clear Bit) merupakan instruksi Jump bersyarat yang memantau nilai-nilai bit tertentu. Bit-bit tertentu bisa merupakan bit-bit dalam register status maupun kaki input mikrokontroler MCS51.

Kelompok Instruksi proses dan test

Instruksi-instruksi Jump bersyarat yang dibahas di atas, memantau kondisi yang sudah terjadi yang dicatat MCS51. Ada dua instruksi yang melakukan dulu suatu proses baru kemudian memantau hasil proses untuk menentukan apakah harus Jump. Kedua instruksi yang dimaksud adalah instruksi DJNZ dan instruksi CJNE.

Instruksi DJNZ

Instruksi DJNZ (Decrement and Jump if not Zero), merupakan instruksi yang akan mengurangi 1 nilai register serbaguna (R0..R7) atau memori-data, dan Jump jika ternyata setelah pengurangan 1 tersebut hasilnya tidak nol.
Contoh berikut merupakan potongan program untuk membentuk waktu tunda secara sederhana :

MOV  R0,#$23
DJNZ R0,$

Instruksi MOV R0,#$23 memberi nilai $23 pada R0, selanjutnya setiap kali instruksi DJNZ R0,$ dikerjakan, MCS51 akan mengurangi nilai R0 dengan ‘1’, jika R0 belum menjadi nol maka MCS51 akan mengulang instruksi tersebut (tanda $ dalam instruksi ini maksudnya adalah kerjakan kembali instruksi ini). Selama mengerjakan 2 instruksi di atas, semua pekerjaan lain akan tertunda, waktu tundanya ditentukan oleh besarnya nilai yang diisikan ke R0.

Instruksi CJNE

Instruksi CJNE (Compare and Jump if Not Equal) membandingkan dua nilai yang disebut dan MCS akan Jump kalau kedua nilai tersebut tidak sama!

MOV  A,P1
CJNE A,#$0A,TidakSama
...
      SJMP EXIT
;
TidakSama:
...
          
Instruksi MOV A,P1 membaca nilai input dari Port 1, instruksi CJNE A,#$0A,Tidaksama memeriksa apakah nilai Port 1 yang sudah disimpan di A sama dengan $0A, jika tidak maka Jump ke TidakSama.

Dasar Pemrograman MCS51 (Bagian 1)

Dasar Pemrograman MCS51 (AT89C51, AT89S51, AT89C2051) atau keluarga mikrokontroler MCS51 Bagian Pertama
Program pengendali mikrokontroler disusun dari kumpulan instruksi, instruksi tersebut setara dengan kalimat perintah bahasa manusia yang hanya terdiri atas predikat dan objek. Dengan demikian tahap pertama pembuatan program pengendali mikrokontroler dimulai dengan pengenalan dan pemahaman predikat (kata kerja) dan objek apa saja yang dimiliki mikrokontroler.

Objek dalam pemrograman mikrokontroler adalah data yang tersimpan di dalam memori, register dan input/output. Sedangkan ‘kata kerja’ yang dikenal pun secara umum dikelompokkan menjadi perintah untuk perpindahan data, arithmetik, operasi logika, pengaturan alur program dan beberapa hal khusus. Kombinasi dari ‘kata kerja’ dan objek itulah yang membentuk perintah pengatur kerja mikrokontroler.
Intruksi MOV A,$7F merupakan contoh sebuah intruksi dasar yang sangat spesifik, MOV merupakan ‘kata kerja’ yang memerintahkan peng-copy-an data, merupakan predikat dalam kalimat perintah ini. Sedangkan objeknya adalah data yang di-copy-kan, dalam hal ini adalah data yang ada di dalam  memori nomor $7F di-copy-kan ke Akumulator A.

Penyebutan data dalam MCS51

Data bisa berada diberbagai tempat yang berlainan, dengan demikian dikenal beberapa cara untuk menyebut data (dalam bahasa Inggris sering disebut sebagai ‘Addressing Mode’), antara lain sebagai berikut:
  • Penyebutan data konstan (immediate addressing mode): MOV A,#$20. Data konstan merupakan data yang berada di dalam instruksi. Contoh instruksi ini mempunyai makna data konstan $20 (sebagai data konstan ditandai dengan ‘#’) di-copy-kan ke Akumulator A. Yang perlu benar-benar diperhatikan dalam perintah ini adalah bilangan $20 merupakan bagian dari instruksi.
  • Penyebutan data secara langsung (direct addressing mode), cara ini dipakai untuk menunjuk data yang berada di dalam memori dengan cara menyebut nomor memori tempat data tersebut berada :  MOV A,$30. Contoh instruksi ini mempunyai makna data yang berada di dalam memori nomor $30 di-copy-kan ke Akumulator. Sekilas intruksi ini sama dengan instruksi data konstan di atas, perbedaannya instruksi di atas memakai tanda ‘#’ yang menandai $20 adalah data konstan, sedangkan dalam instruksi ini karena tidak ada tanda ‘#’ maka $30 adalah nomor dari memori.
  • Penyebutan data secara tidak langsung (indirect addressing mode), cara ini dipakai untuk menunjuk data yang berada di dalam memori, kalau memori penyimpan data ini letaknya berubah-rubah sehingga nomor memori tidak disebut secara langsung tapi di-‘titip’-kan ke register lain : MOV A,@R0. Dalam instruksi ini register serba guna R0 dipakai untuk mencatat nomor memori, sehingga instruksi ini mempunyai makna memori yang nomornya tercatat dalam R0 isinya di-copy-kan ke Akumulator A. Tanda ‘@’ dipakai untuk menandai nomor memori disimpan di dalam R0. Bandingkan dengan instruksi penyebutan nomor memori secara langsung di atas, dalam instruksi ini nomor memori terlebih dulu disimpan di R0 dan R0 berperan menunjuk memori mana yang dipakai, sehingga kalau nilai R0 berubah memori yang ditunjuk juga akan berubah pula. Dalam instruksi ini register serba guna R0 berfungsi dengan register penampung alamat (indirect address register), selain R0 register serba guna R1 juga bisa dipakai sebagai register penampung alamat.
  • Penyebutan data dalam register (register addressing mode): MOV A,R5. Instruksi ini mempunyai makna data dalam register serba guna R5 di-copy-kan ke Akumulator A. Instruksi ini membuat register serba guna R0 sampai R7 sebagai tempat penyimpan data yang sangat praktis yang kerjanya sangat cepat.
  • Data yang dimaksud dalam bahasan di atas semuanya berada di dalam memori data (termasuk register serba guna letaknya juga di dalam memori data). Dalam penulisan program, sering-sering diperlukan tabel baku yang disimpan bersama dengan program tersebut. Tabel semacam ini sesungguhnya merupakan data yang berada di dalam memori program! Untuk keperluan ini, MCS51 mempunyai cara penyebutan data dalam memori program yang dilakukan secara indirect (code indirect addressing mode) : MOVC A,@A+DPTR. Perhatikan dalam instruksi ini MOV digantikan dengan MOVC, tambahan huruf C tersebut dimaksud untuk membedakan bahwa instruksi ini dipakai di memori program. (MOV tanpa huruf C artinya instruksi dipakai di memori data). Tanda ‘@’ dipakai untuk menandai A+DPTR dipakai untuk menyatakan nomor memori yang isinya di-copy-kan ke Akumulator A, dalam hal ini nilai yang tersimpan dalam DPTR (Data Pointer Register - 2 byte) ditambah dengan nilai yang tersimpan dalam Akumulator A (1 byte) dipakai untuk menunjuk nomor memori program.
Kata kerja (instruksi) dalam MCS51
Secara keseluruhan AT89Cx051 mempunyai sebanyak 255 macam instruksi, yang dibentuk dengan mengkombinasikan ‘kata kerja’ dan objek. “Kata kerja’ tersebut secara kelompok dibahas sebagai berikut : 

1. KELOMPOK PENG-COPY-AN DATA
Kode dasar untuk kelompok ini adalah MOV, singkatan dari MOVE yang artinya memindahkan, meskipun demikian lebih tepat dikatakan perintah ini mempunyai makna peng-copy-an data. Hal ini bisa dijelaskan berikut : setelah instruksi MOV A,R7 dikerjakan, Akumulator A dan register serba guna R7  berisikan data yang sama, yang asalnya tersimpan di dalam R7.
Perintah MOV dibedakan sesuai dengan jenis memori AT89Cx051. Perintah ini pada memori data dituliskan menjadi MOV, misalkan :
MOV A,$20
MOV A,@R1
MOV A,P1
MOV P3,A

Untuk pemakaian pada memori program, perintah ini dituliskan menjadi MOVC, hanya ada 2 jenis instruksi yang memakai MOVC, yakni:

MOVC A,@A+DPTR  ; DPTR sebagai register indirect
MOVC A,@A+PC    ; PC sebagai register indirect

Selain itu, masih dikenal pula perintah MOVX, yakni perintah yang dipakai untuk memori data eksternal (X singkatakan dari External). Perintah ini hanya dimiliki oleh anggota keluarga MCS51 yang mempunyai memori data eksternal, misalnya AT89C51 dan lain sebagainya, dan jelas tidak dikenal oleh kelompok AT89Cx051 yang tidam punya memori data eksternal.  Hanya ada 6 macam instruksi yang memakai MOVX, instruksi-instruksi tersebut adalah:

MOVX A,@DPTR
MOVX A,@R0
MOVX A,@R1
MOVX @DPTR,A
MOVX @R0,A
MOVX @R1,A


2.  KELOMPOK ARIMATIK (ADD, ADDC, SUBB, DA, MUL dan DIV)
Perintah ADD dan ADDC
Isi Akumulator A ditambah dengan bilangan 1 byte, hasil penjumlahan akan ditampung kembali dalam Akumulator. Dalam operasi ini bit Carry (C flag dalam PSWProgram Status Word) berfungsi sebagai penampung limpahan hasil penjumlahan. Jika hasil penjumlahan tersebut melimpah (nilainya lebih besar dari 255) bit Carry akan bernilai ‘1’, kalau tidak bit Carry bernilai ‘0’. ADDC sama dengan ADD, hanya saja dalam ADDC nilai bit Carry dalam proses sebelumnya ikut dijumlahkan bersama.
Bilangan 1 byte yang ditambahkan ke Akumulator, bisa berasal dari bilangan konstan, dari register serba guna, dari memori data yang nomor memorinya disebut secara langsung maupun tidak langsung, seperti terlihat dalam contoh berikut :

      ADD A,R0     ; register serba guna
   ADD A,#$23   ; bilangan konstan
   ADD A,@R0    ; no memori tak langsung
   ADD A,P1     ; no memori langsung (port 1)

Perintah SUBB
Isi Akumulator A dikurangi dengan bilangan 1 byte berikut dengan nilai bit Carry, hasil pengurangan akan ditampung kembali dalam Akumulator. Dalam operasi ini bit Carry juga berfungsi sebagai penampung limpahan hasil pengurangan. Jika hasil pengurangan tersebut melimpah (nilainya kurang  dari 0) bit Carry akan bernilai ‘1’, kalau tidak bit Carry bernilai ‘0’.
     
SUBB A,R0    ; A = A - R0 - C
   SUBB A,#$23  ; A = A - $23
   SUBB A,@R1
   SUBB A,P0

Perintah DA
Perintah DA (Decimal Adjust) dipakai setelah perintah ADD; ADDC atau SUBB, dipakai untuk merubah nilai biner 8 bit yang tersimpan dalam Akumulator menjadi 2 buah bilangan desimal yang masing-masing terdiri dari nilai biner 4 bit.         
     
Perintah MUL AB
Bilangan biner 8 bit dalam Akumulator A dikalikan dengan bilangan biner 8 bit dalam register B. Hasil perkalian berupa bilangan biner 16 bit,  8 bit bilangan biner yang bobotnya lebih besar ditampung di register B, sedangkan 8 bit lainnya yang bobotnya lebih kecil ditampung di Akumulator A.
Bit OV dalam PSW (Program Status Word) dipakai untuk menandai nilai hasil perkalian yang ada dalam register B. Bit OV akan bernilai ‘0’ jika register B bernilai $00, kalau tidak bit OV bernilai ‘1’.

      MOV A,#10
   MOV B,#20
   MUL AB
 
Perintah DIV AB
Bilangan biner 8 bit dalam Akumulator A dibagi dengan bilangan biner 8 bit dalam register B. Hasil pembagian berupa bilangan biner 8 bit ditampung di Akumulator, sedangkan sisa pembagian berupa bilangan biner 8 bit ditampung di register B.
Bit OV dalam PSW (Program Status Word) dipakai untuk menandai nilai sebelum pembagian yang ada dalam register B. Bit OV akan bernilai ‘1’ jika register B asalnya bernilai $00.


3. KELOMPOK LOGIKA (ANL, ORL dan XRL)

Kelompok perintah ini dipakai untuk melakukan operasi logika mikrokontroler MCS51, operasi logika yang bisa dilakukan adalah operasi AND (kode operasi ANL), operasi OR (kode operasi ORL) dan operasi Exclusive-OR (kode operasi XRL).
Data yang dipakai dalam operasi ini bisa berupa data yang berada dalam Akumulator atau data yang berada dalam memori-data, hal ini sedikit berlainan dengan operasi aritmatik yang harus melihatkan Akumulator secara aktip.
Hasil operasi ditampung di sumber data yang pertama.

·    Operasi logika AND banyak dipakai untuk me-‘0’-kan beberapa bit tertentu dari sebuah bilangan biner 8 bit, caranya dengan membentuk sebuah bilangan biner 8 bit sebagai data konstan yang di-ANL-kan bilangan asal. Bit yang ingin di-‘0’-kan diwakili dengan ‘0’ pada data konstan, sedangkan bit lainnya diberi nilai ‘1’, misalnya
Instruksi ANL P1,#%01111110 akan mengakibatkan bit 0 dan bit 7 dari Port 1 (P1) bernilai ‘0’ sedangkan bit-bit lainnya tetap tidak berubah nilai.
·        Operasi logika OR banyak dipakai untuk me-‘1’-kan beberapa bit tertentu dari sebuah bilangan biner 8 bit, caranya dengan membentuk sebuah bilangan biner 8 bit sebagai data konstan yang di-ORL-kan bilangan asal. Bit yang ingin di-‘1’-kan diwakili dengan ‘1’ pada data konstan, sedangkan bit lainnya diberi nilai ‘0’, misalnya
Instruksi ORL A,#%01111110 akan mengakibatkan bit 1 sampai dengan bit 6 dari Akumulator bernilai ‘1’ sedangkan bit-bit lainnya tetap tidak berubah nilai.
·        Operasi logika Exclusive-OR banyak dipakai untuk membalik nilai (complement) beberapa bit tertentu dari sebuah bilangan biner 8 bit, caranya dengan membentuk sebuah bilangan biner 8 bit sebagai data konstan yang di-XRL-kan bilangan asal. Bit yang ingin dibalik-nilai diwakili dengan ‘1’ pada data konstan, sedangkan bit lainnya diberi nilai ‘0’,  misalnya
Instruksi XRL A,#%01111110 akan mengakibatkan bit 1 sampai dengan bit 6 dari Akumulator berbalik nilai, sedangkan bit-bit lainnya tetap tidak berubah nilai.

Konsep dan Struktur Bahasa Assembly Pada MCS51

x
x
Sarana yang ada dalam program assembly sangat minim, tidak seperti dalam bahasa pemrograman tingkat atas (high level language programming) semuanya sudah siap pakai. Penulis program assembly harus menentukan segalanya, menentukan letak program yang ditulisnya dalam memori-program, membuat data konstan dan tablel konstan dalam memori-program, membuat variabel yang dipakai kerja dalam memori-data dan lain sebagainya.


Program sumber assembly

Program-sumber assembly (assembly source program) merupakan kumpulan dari baris-baris perintah yang ditulis dengan program penyunting-teks (text editor) sederhana, misalnya program EDIT.COM dalam DOS, atau program NOTEPAD dalam Windows. Kumpulan baris-printah tersebut biasanya disimpan ke dalam file dengan nama ekstensi *.ASM atau nama lain misalnya *.A51 dan lain sebagainya, tergantung pada program Assembler yang akan dipakai untuk mengolah program-sumber assembly tersebut.

Setiap baris-perintah merupakan sebuah perintah yang utuh, artinya sebuah perintah tidak mungkin dipecah menjadi lebih dari satu baris. Satu baris perintah bisa terdiri atas 4 bagian, bagian pertama dikenali sebagai label atau sering juga disebut sebagai symbol, bagian kedua dikenali sebagai kode operasi, bagian ketiga adalah operand dan bagian terakhir adalah komentar.




Antara bagian-bagian tersebut dipisahkan dengan sebuah spasi atau tabulator.




    1. Bagian label

Label dipakai untuk memberi nama pada sebuah baris-perintah, agar bisa mudah menyebitnya dalam penulisan program. Label bisa ditulis apa saja asalkan diawali dengan huruf, biasa panjangnya tidak lebih dari 16 huruf. Huruf-huruf berikutnya boleh merupakan angka atau tanda titik dan tanda garis bawah. Kalau sebuah baris-perintah tidak memiliki bagian label, maka bagian ini boleh tidak ditulis namun spasi atau tabulator sebagai pemisah antara label dan bagian berikutnya mutlak tetap harus ditulis.


Dalam sebuah program sumber bisa terdapat banyak sekali label, tapi tidak boleh ada label yang kembar.




Sering  sebuah baris-perintah hanya terdiri dari bagian label saja, baris demikian itu memang tidak bisa dikatakan sebagai baris-perintah yang sesungguhnya, tapi hanya sekedar memberi nama pada baris bersangkutan.


Bagian label sering disebut juga sebagai bagian symbol, hal ini terjadi kalau label tersebut tidak dipakai untuk menandai bagian program, melainkan dipakai untuk menandai bagian data. 
Bagian kode operasi

Kode operasi (operation code atau sering disingkat sebagai OpCode) merupakan bagian perintah yang harus dikerjakan. Dalam hal ini dikenal dua macam kode operasi, yang pertama adalah kode-operasi untuk mengatur kerja mikroprosesor / mikrokontroler. Jenis kedua dipakai untuk mengatur kerja program assembler, sering dinamakan sebagai assembler directive.

Kode-operasi ditulis dalam bentuk mnemonic, yakni bentuk singkatan-singkatan yang relatip mudah diingat, misalnya adalah MOV, ACALL, RET dan lain sebagainya. Kode-operasi ini ditentukan oleh pabrik pembuat mikroprosesor/mikrokontroler, dengan demikian setiap prosesor mempunyai kode-operasi yang berlainan.

Kode-operasi berbentuk mnemonic tidak dikenal mikroprosesor/mikrokontroler, agar program yang ditulis dengan kode mnemonic bisa dipakai untuk mengendalikan prosesor, program semacam itu diterjemahkan menjadi program yang dibentuk dari kode-operasi  kode-biner, yang dikenali oleh mikroprosesor/mikrokontroler.

Tugas penerjemahan tersebut dilakukan oleh program yang dinamakan sebagai Program Assembler. 

Di luar kode-operasi yang ditentukan pabrik pembuat mikroprosesor/mikrokontroler, ada pula kode-operasi untuk mengatur kerja dari program assembler, misalnya dipakai untuk menentukan letak program dalam memori (ORG), dipakai untuk membentuk variabel (DS), membentuk tabel dan data konstan (DB, DW) dan lain sebagainya.

2. Bagian operand
Operand merupakan pelengkap bagian kode operasi, namun tidak semua kode operasi memerlukan operand, dengan demikian bisa terjadi sebuah baris perintah hanya terdiri dari kode operasi tanpa operand. Sebaliknya ada pula kode operasi yang perlu lebih dari satu operand, dalam hal ini antara operand satu dengan yang lain dipisahkan dengan tanda koma.


Bentuk operand sangat bervariasi, bisa berupa kode-kode yang dipakai untuk menyatakan Register dalam prosesor, bisa berupa nomor-memori (alamat memori) yang dinyatakan dengan bilangan atau pun nama label, bisa berupa data yang siap di-operasi-kan. Semuanya disesuaikan dengan keperluan dari kode-operasi.


Untuk membedakan operand yang berupa nomor-memori atau operand  yang berupa data yang siap di-operasi-kan, dipakai tanda-tanda khusus atau cara penulisan yang berlainan.

Di samping itu operand bisa berupa persamaan matematis sederhana atau persamaan Boolean, dalam hal semacam ini program Assembler akan menghitung nilai dari persamaan-persamaan dalam operand, selanjutnya merubah hasil perhitungan tersebut ke kode biner yang dimengerti oleh prosesor. Jadi perhitungan di dalam operand dilakukan oleh program assembler bukan oleh prosesor!

3. Bagian komentar
Bagian komentar merupakan catatan-catatan penulis program, bagian ini meskipun tidak mutlak diperlukan tapi sangat membantu masalah dokumentasi. Membaca komentar-komentar pada setiap baris-perintah, dengan mudah bisa dimengerti maksud tujuan baris bersangkutan, hal ini sangat membantu orang lain yang membaca program.

Pemisah bagian komentar dengan bagian sebelumnya adalah tanda spasi atau tabulator, meskipun demikian huruf pertama dari komentar sering-sering berupa tanda titik-koma, merupakan tanda pemisah khusus untuk komentar.

Untuk keperluan dokumentasi yang intensip, sering-sering sebuah baris yang merupakan komentar saja, dalam hal ini huruf pertama dari baris bersangkutan adalah tanda titik-koma.

Pembahasan di atas diringkas dalam Gambar 1.




Gambar 1
Program-sumber assembly




Assembly Listing

Program-sumber assembly di atas, setelah selesai ditulis diserahkan ke program Assembler untuk diterjemahkan. Setiap prosesor mempunyai program assembler tersendiri, bahkan satu macam prosesor bisa memiliki beberapa macam program Assembler buatan pabrik perangkat lunak yang berlainan.

Hasil utama pengolahan program Assembler adalah program-obyek. Program-obyek ini bisa berupa sebuah file tersendiri, berisikan kode-kode yang siap dikirimkan ke memori-program mikroprosesor/mikrokontroler, tapi ada juga  program-obyek yang disisipkan pada program-sumber assembly seperti terlihat dalam Assembly Listing di Gambar 2.

Bagian kanan Gambar 2 merupakan program-sumber Assembly karya asli penulis program, setelah diterjemahkan oleh program Assembler kode-kode yang dihasilkan berikut dengan nomor-nomor memori tempat penyimpanan kode-kode tadi, disisipkan pada bagian kiri setiap baris perintah, sehingga bentuk program ini tidak lagi dikatakan sebagai program-sumber assembly tapi dikatakan sebagai Assembly Listing.

Membaca Assembly Listing bisa memberikan gambaran yang lebih jelas bagi program yang ditulis, bagi pemula Assembly Listing memberi pengertian yang lebih mendalam tentang isi memori-program, sehingga bisa lebih dibayangkan bagaimana kerja dari sebuah program.



Gambar 2
Assembly Listing







Program Obyek format HEX

Selain Assembly Listing, hasil kerja program Asembler lainnya adalah program obyek yang dipakai untuk mengendalikan sebuah mikroprosesor/mikrokontroler, program obyek disimpan dalam file. Terdapat dua macam bentuk file penyimpan program obyek, yang pertama adalah file yang berisikan kode biner murni,  dan yang satu lagi adalah file biner yang sudah diolah menjadi file teks.


File jenis pertama biasanya dinamakan sebagai binary object file, biasanya memakai ekstensi *.BIN. File semacam ini hanya berisikan angka-angka biner yang akan diisikan ke dalam memori tanpa informasi lain, sehingga selalu dianggap bahwa bahwa file tersebut berisikan kode-kode biner yang nantinya ditempatkan mulai dari memori nomor 0. Kalau ternyata kode-kode biner diisikan mulai dari memori nomor 8000h, maka mulai posisi 0 sampai 7FFFh akan diisi dengan bilangan biner 00h, baru setelah itu menyusul kode biner yang sesungguhnya. File semacam ini banyak dipakai untuk EPROM Programmer model lama.

File jenis kedua dinamakan Hexadecimal format object file, biasanya memakai ekstensi *.BIN . Data biner dirubah ke dalam bentuk heksadesimal dan yang disimpan ke dalam file adalah kode ASCII dari bilangan heksadesimal tersebut. Misalnya data biner 00111010, atau heksadesimal 3Ah, dituliskan ke dalam file menjai 33h (kode ASCIInya angka 3) dan 41h (kode ASCIInya huruf A). Dengan cara ini isi dari file tersebut bisa dengan mudah dibaca dengan program penyunting teks (text editor) biasa, bahkan bisa di-cetak di atas kertas seperti terlihat dalam Gambar 3, file semacam itu bisa dibaca dengan text editor biasa, misalnya EDIT.COM dalam DOS, atau NOTEPAD dalam Windows.

Dalam file format HEX semacam ini, selain disimpan data biner yang akan diisikan ke ROM, berisikan pula nomor-nomor memori tempat penyimpanan data biner tersebut. EPROM programer baru umumnya memakai format file obyek semacam ini.

Gambar 3
Program obyek format HEX




Format HEX dari Intel
Ada beberapa macam format untuk membentuk file program obyek dengan format HEX (Hexadecimal format object file), meskipun demikian hanya 2 yang banyak dipakai, yakni format buatan Motorola yang dinamakan sebagai format S19 dan format buatan Intel yang biasa disebut sebagai format HEX dari Intel.

Berikut ini adalah pembahasan file program obyek dengan format HEX dari Intel yang dipakai MCS51, format ini didefinisikan dalam artikel dari Intel dengan judul Hexadecimal Object File Format Specification (http://alds.stts.edu/appnote/#MCS51).


Gambar 4
Anatomi baris-baris dalam file format HEX



File program obyek dengan format HEX dari Intel berisikan baris-baris tulisan seperti terlihat dalam Gambar4.

Setiap baris mengandung informasi tentang berapa banyak data dalam baris tersebut, alamat awal tempat penyimpanan data dalam baris tersebut, jenis baris dan sarana untuk memastikan kebenaran data yang dinamakan sebagai check sum. Dalam baris tersebut, setiap huruf (kecuali huruf pertama) mewakili satu bilangan heksa-desimal, dengan demikian setiap 2 huruf membentuk data satu byte yang terdiri dari 2 bilangan heksadesimal.

Rincian dari format tersebut sebagai berikut :

1. Huruf pertama dalam baris, selalu berisi tanda “:”, merupakan kode identitas yang menyatakan baris tersebut berisikan kode-kode biner yang disimpan dalam format HEX dari Intel.

2. Huruf ke-2 dan ke-3 dipakai untuk menyatakan banyaknya data dalam baris yang dinyatakan dengan 2 angka heksa-desimal, sehingga banyaknya data dalam 1 baris maksimal adalah 255 (atau heksa-demimal FF).

3. Huruf ke 4 sampai 7, merupakan 4 angka heksa-desimal yang dipakai untuk menyatakan alamat awal tempat penyimpanan kode-kode dalam baris teks bersangkutan.

4. Huruf 8 dan 9 dipakai untuk menyatakan jenis teks data. Nilai 00 dipakai untuk menyatakan baris tersebut berisikan data biasa, 01 menyatakan baris tersebut merupakan baris terakhir. 

5. Huruf ke 10 dan seterusnya adalah data. Setiap 2 huruf mewakili data 1 byte, sehingga jumlah huruf pada bagian ini adalah dua kali banyaknya data yang disebut pada butir 2 di atas.

6. 2 huruf terakhir dalam baris merupakan check sum. Byte-byte yang disebut dalam butir 2 sampai 5 di atas dijumlahkan, hasil penjumlahan di-balik (inverted) sebagai bilangan check sum. (Hasil penjumlahan bisa menghasilkan nilai yang lebih besar dari 2 bilangan heksadesimal, namun hanya 2 bilangan heksa-desimal yang bobotnya terkecil yang dipakai).

Kontrol Traffic Light Menggunakan 8051/AT89C2051

Mikrokontroler memiliki fungsi yang sangat luas sekali, kali ini saya akan menggunakan mikrokontroler sebagai pengontrol dari lampu lalu lintas atau traffic light,

Dengan memanfaatkan 2 port dari AT89C2051 kita sudah bisa mengontrol traffic light dengan 4 simpangan/perempatan.

Dibawah ini adalah skema dari rangkaian tersebut:
Untuk melihat ukurannya silahkan klik pada gambar

Rangkaian membutuhkan tegangan 5V yang telah diregulasi, pada proyek ini lampu yang digunakan adalah lampu led. jika anda ingin menggunakan lampu 220V atau yang lebih tinggi tegangannya anda memerlukan Relay Board sebagai penghubung mikrokontroler dengan lampu.
 Untuk Relay Board saya akan terbitkan di lain posting.

Source Kode Rangkaian :

NR    EQU    P3.5
NY    EQU    P3.4
NG    EQU    P3.3

SR    EQU    P1.2
SY    EQU    P1.3
SG    EQU    P1.4

ER    EQU    P1.5
EY    EQU    P1.6
EG    EQU    P1.7

WR    EQU    P3.7
WY    EQU    P1.0
WG    EQU    P1.1

CSEG     AT      0        ; RESET VECTOR
;---------==========----------==========---------=========---------
;              PROCESSOR INTERRUPT AND RESET VECTORS
;---------==========----------==========---------=========---------

        ORG     00H            ; Reset
        JMP     MAIN
;---------==========----------==========---------=========---------
MAIN:
       MOV SP,#40H
       MOV P1,#0FFH
       MOV P3,#0FFH
      
TOP:     CLR NR
       CLR SR
       CLR ER
       CLR WY
       SETB WG
       CALL Y_DELAY
       SETB NR
       CLR NY
       CLR WR
       SETB WY
       CALL Y_DELAY
       SETB NY
       CLR NG
       CALL DELAY
      
       CLR NY
       SETB NG
       CALL Y_DELAY
       CLR NR
       SETB NY
       SETB SR
       CLR SY
       CALL Y_DELAY
       SETB SY
       CLR SG
       CALL DELAY
      
       CLR SY
       SETB SG
       CALL Y_DELAY
       CLR SR
       SETB SY
       SETB ER
       CLR EY
       CALL Y_DELAY
       SETB EY
       CLR EG
       CALL DELAY
      
       CLR EY
       SETB EG
       CALL Y_DELAY
       CLR ER
       SETB EY
       SETB WR
       CLR WY
       CALL Y_DELAY
       SETB WY
       CLR WG
       CALL DELAY
       AJMP TOP
      
      
      
;**********************************************************
DELAY:
            MOV R3,#3FH
REPA3:    MOV R1,#0FFH
REPA2:    MOV R2,#0FFH
REPA1:    NOP
            DJNZ R2,REPA1
            DJNZ R1,REPA2
            DJNZ R3,REPA3
            RET
;  ---------==========----------==========---------=========---------
Y_DELAY:
            MOV R3,#1AH
RQPA3:    MOV R1,#0FFH
RQPA2:    MOV R2,#0FFH
RQPA1:    NOP
            DJNZ R2,RQPA1
            DJNZ R1,RQPA2
            DJNZ R3,RQPA3
            RET
;**********************************************************
     END




Kode Lengkap Rangkaian beserta Skema rangkaian dapat anda download disini

Tutorial Top View Simulator

  • Judul : Tutorial Mikrokontroler menggunakan Top View Simulator
  • Bahasa : Indonesia
  • Jenis File : PDF (Adobe reader)
  • Jumlah Halaman : 33
  • Lain-lain :
  • Isi :
  1. Dasar Penggunaan
  2. Pembuatan program dan simulasi led
  3. Pembuatan program dan simulasi Switch
  4. Pembuatan program dan simulasi 7segment
  5. Pembuatan program dan simulasi LCD
Anda bisa mendownloadnya disini